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model, but their existence would be in conflict with other non-gyroscope observations.

................ !!!_ If the gyroscope precession rates are found to differ from the predictions which can be

uniquely made from other observations of relativistic effects in the solar system, a major crisis

and opportunity!) would face gravitational theory: it would then appear that no motional, post-

Newtonian gravitational equation of motion can be constructed which reconciles the total set of

post-Newtonian observations in the solar system.
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I. Introduction

Even before Einstein's general relativity theory was created, ¢_>there was informed

speculation that the inertial properties of matter were determined by matter's cosmological

distribution, itself, m Such points of view became known as "Mach's Principle", but often such

concepts were stated without a specific quantitative model or theory for proper and complete

formulation.

It was soon noticed that in general relativity theory some of these Machian ideas were

manifest. These concepts soon acquired the descriptive interpretation -- "the dragging of inertial

frames" due to proximate moving matter.

In general relativity (and other metric theories of gravity) gravity is a consequence of the

metric field g_,(_,t). At any space-time location a coordinate transformation can be found that

eliminates all f'u'st space and time partial derivatives of the metric field; and a simple linear

transformation then can set gw equal to special relativity's Minkowski metric;

g_,(7.t) _ 11,,+ O(x" - x*O" 1.I

The locality is now a freely falling, inertial frame with only tidal gravitational fields. The

transformation which accomplishes (1.1) is non-linear;

x_"= (x_- x*O+ _ r_(x- - x_o)(x_- _ x.2

I'_ are the Chrisstofel symbols formed from g_ and its first partial derivatives, evaluated at the

space-time locality x_

For the space-time indices p, co, [3 taking various types of values, quasi-physical descriptions can

be made of the various terms which occur in the transformation (1.2) to the locally freely falling
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inertial frame.

(p, (x, _ all spatial coordinates) These terms indicate a non-linear "warping" of the spatial

coordinates.

(p spatial, (x and _ time coordinates) These terms indicate an accelerative dragging of the inertial

frame;

_x k .. _ 1-*,o&_ k - x,y,z

(p spatial, oc spatial and _ temporal) These terms indicate a dragging of the inertial frame going

linear in time;

The Chrisstofel symbols 1_ can be viewed as a 3x3 spatial matrix with dimensions of frequency

(I/t). The antisymmetric part of l_k_othen plays the special role of interest to this study;

l_=stt+ _ eak_t 1.4
|

with s_k representing the syrmnetric part of 1-_no and the frequency vector o_ being a convenient

way to express the three independent components of the antisymmetric part of _o. _lN, is the

antisymmetric permutation tensor.

Whereas shk represents a time dependent rescaling of the inertial coordinates (both a

stretching and warping, in general), the interpretation of the effect of the antisymmetric part of

is unambiguous and familiar -- a pure rotation of the local inertial frame;

=- x ff -7o) &

with _ giving the rotation axis and rate of rotation. In weak gravity and the fLrSt post-Newtonian
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order approximation;

_,. " _(_..t-g,,,..- g,,k.,)

with the antisymmetric part being simply;

P_- 17,0= g_..,- g,o.k

l.Sa

1.5b

The three components g_, of the complete metric field are commonly called the gravitomagnetic

vector potential in analogy with electromagnetic theory;

g_o•h k=x,y,z

then

_=-_x_ 1.6

The source of the gravitomagnetic vector potential is moving matter; in general relativity

(in a common gauge);

m|Fa= (7/2)-- ;, +(1/2)m' ;, .rr
r r

1.7

for a source rn, moving at velocity v,.

gravitomagnetic vector potential is

8a--_/at -; _05_F0

The acceleration of a test particle in the presence of a

1.8

with _/_t being an "electric" type acceleration and _ x 07 x 1_) being the "magnetic" type

acceleration;

1.9
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Just astwo electric currents produce a magnetic force between themselves, two mass currents

produce a gravitational force (1.9) whose unique signature is that it is a gravitational acceleration

proportional to the velocity of both interacting masses. (1.9) can be considered a different way

of viewing the dragging of inertial frames. This interaction does not require spinning mass --

simply moving mass.

Superimposing the acceleration (1.9) for a spinning body mass source and a spinning body

test object, it then produces a torque acting on the two gyroscopes which causes precession of

the gyroscope spin axes: from the geometrical point of view this precession of interacting

gyroscopes is simply the following of rotating inertial frames.

But, in fact, a gravitomagnetic contribution to the post-Newtonian gravitational interaction

plays a ubiquitous role in contributing to observable phenomena. °) It is present in any

configuration of matter where there is muthal motion of two interacting bodies. The spin-spin

interaction of two gyroscopes is just a special case and configuration for measuring the nature

of this part of the complete post-Newtonian structure of gravity. It is not necessary to use

gyroscopes in order to measure gravitomagnetism.

There are other motional corrections to the static, Newtonian interaction. Just as (1.9) is

an acceleration proportional to (v)(v,), there are accelerations proportional to v" or v=,. The entire

package of motional corrections will determine the properties of the gravitational interaction

under Lorentz transformations. Gravity need not be Lorentz invariant. (') If the underlying field

theory of gravity were to be based on two (or more) tensor fields, or a vector field as well as a

tensor field, then the cosmos could produce preferred inertial frames in its gravitational

interaction: there would be phenomena resulting from the gravitational interaction which could
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dependon the velocity of the system relative to the cosmological preferred flames. The

gravitomagnetic interactions are part of the whole package of motional corrections to the static

Newtonian interaction, which as a package determines whether gravity has preferred inertial

frames or not.

This study takes as phenomenological a point of view as possible. We build the post-

Newtonian gravitational interaction structure from empirical observations, and with a minimum

of a-priori theoretical presuppositions. Several assumptions which we will not make a-priori are

that:

1. Gravity is metric field based;

2. Gravity has any special properties under Lorentz transformations;

3. Gravity fulfdls any conservation laws or is derivable from a post-Newtonian many

body Lagrangian.

What is assumed is simply that there are post-Newtonian equations of motion for,

1. mass particles in the presence of other matter;

2. photons in proximity to matter;

3. non-gravitational clocks near matter.

Isolated, but general N body gravitational systems are assumed to be surrounded by

asymptotic inertial frames, in which non-gravitational rulers and clocks fulfill the transformation

laws of special relativity. The coordinate speed of light is assumed to be a function of space-

time position relative to matter, and therefore it can be expressed by a phenomenological

expansion;



l t

I.I0,

A
The dynamical evolution of the light propagation vector c can be based on (1.10) and a "least

time" principle, or it can be assumed to be based on an independent phenomenological expansion;

ae/d_--r,_ m_(_,-¢-C_,-r-)-ee)/l_, -_f .... 1.11
i

Since there have been independent observations in the solar system of the effect of proximate

matter on light propagation times (1.10) (s) and on deflection of light (1.11),(_ we can empirically

conclude that;

F2 = - FI " 2 4. 10 .3 1.12a

and

- 0 4. 10 "3 1.12b

Experiments on the rate at which non-gravitational clocks run when in proximity to matter

(and in motion) fred first that different types of non-gravitational clocks all behave in a universal

fashion; (n and secondly that in lowest order (in powers of 1/c:) their proper rate x is given by: (s)

d_/dt: _-alE m_¢-_l-',_v:+..-
l

1.13

with

a= 1 4- 10 4 1.14

and t is the time kept by a non-gravitational clock which is at rest in the inertial frame and
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locatedasymptoticallyfar from matter.

Non-gravitational clocks and photons, governed by the empirically determined expressions

(1.10), (1.11) and (1.i3), are then the chief probes with which to look at the dynamics of bodles

in the solar system. It remains to assume a most general, post-Newtonlan gravitational equation

of motion for an N body system of particles. The coordinate accelerations of particle i in the

presence of other bodies j,k will be assumed to be of the form;

d_t/dt 2 _ -3+-- Gn_ r_/r_ E _(motional)÷ E _k (n°n-linear)
j j Jk

(1.15)

The first term in (1.15) is the Newtonian approximation to the gravitational interaction; the two

post-Newtonian contributions to (1.15) are proportional to 1/c2: they differ in that the two body

motional terms are proportional to (v/c) 2 --- the square of body velocities --- times Newtonian

accelerations, while the non-linear accelerative terms in (1.15) have an extra power of Newtonian

gravitational potential (Gm/c2r) multiplying Newtonian acceleration.

The dynamical equation of motion (1.15) can only be assumed to hold in one

cosmological inertial frame. Until the detailed structure of glj(motional) is specified by empirical

observation, it can not be assumed that (1.15) has any special Lorentz transformation properties.

As seen in (2.1) _j(motional) has ten arbitrary coefficients in its general expression, of

which one is a free gauge or coordinate system parameter. This leaves nine coefficients to be

specified by nine (or more) independent empirical observations concerning the shape and rate of

solar system body orbits. If more than nine independent observations are available, but which

depend only on the nine free motional coefficients, redundant constraint will exist on the model
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(1.15). These redundant observations could conceivably clash and not all be consistent with any

choice of the nine coefficients in the expression for g_j(motional). We would view this as a

fundamental crisis (and perhaps oppommity!) in gravitational theory, as it is difficult to see how

any theory could be constructed which does not lead to motional post-Newtonian gravitational

accelerations of the form (2.1)

In particular, consider the future plans to orbit a precision gyroscope and measure the

precession of its spin axis with respect to a reference frame defined by lines of sight to the

distant stars. _9_ There are expected secular precessions of the gyroscope's axis due to two

sources:

1. It's orbital motion about the Earth (geodetic precession);

2. It's interaction with the gravitomagnetic field of the spinning Earth (inertial frame

dragging).

From the point of view of our phenomenological gravitational equation of motion (1.15), both

types of gyroscopic precession are simply additional manifestations of the motional, post-

Newtonian corrections to Newtonian gravity: the geodetic precession is viewed as a consequence

of acceleration terms proportional to the square of the velocity of the test body mass elements,

while the precession related to the dragging of inertial frames is considered a result of

acceleration terms proportional to the velocity of source masses and the velocity of the test body

masses. We will derive expressions for the general secular gyroscope precessions which can

occur in an equation of motion of the type (1.15) (see actually (2.1)); and also we will obtain the

many other observables which result from _j(motional) but are not gyroscope observables. There

will be more independent observables than there are free coefficients in (1.15) --- redundancy! -



-- and thereforethe possibility of inconsistencyof gyroscopeobservationswith the othersolar

systemobservations.

Therearealso someothernon-secular(but neverthelesspossiblymeasurable)gyroscope

precessionswhich result from the phenomenological model (1.15). Some of these non-secular

precessions would imply non-metric gravity. The solar system is traveling relative to the cosmos

at a speed of order [w[ ,, 2 103c, while an earth orbiting gyroscope is carried around the Sun

at speed Iv[ - 10"_c. The equation of motion (2.1) with its w-dependent terms (2.3) can

therefore possibly produce additional perturbations of the spin axis of a gyroscope which are

dimensionally of the form;

8s = gl s •vv 1.16a

and

1.16b

and in which the coefficients gl .... g, would be linear combinations of the phenomenological

coefficients cj in (2.1). The term (1.16a) is only a few milliareseconds in magnitude; however

the preferred frame terms (1.16b) vary about 80 milliareseconds with an annual period.

The format of this study is as follows. In section II. we state the general

phenomenological form that the motional, post-Newtonian gravitational acceleration terms can

have in an N body gravitational system. Then a set of "observables" are derived which are

attributes of orbits and dynamics of planets and test bodies in the solar system which are

routinely measured by ranging experiments and/or telescopic observations. The observables form



a redundant set --- they more than uniquely determine the free coefficients in the equation of

motion. The observables could, in fact, possibly be inconsistent with the general model.

Precession rates for orbiting gyroscopes are calculated as some of the observables. All possible

gyroscope precessions are determined by coefficients measured in other non-gyroscope

observations.

In section HI. additional observations are derived which depend also on the non-linear

structure of the post-Newtonian gravitational interaction. Some of these observations produce

additional constraint on the motional coefficients cl ... C_o.

In section IV. we review the accuracy with which the various observables have been

measured by past solar system observations, and how well this then permits us to predict the

magnitude of the gyroscope precession terms.

Section V. discusses some of the conservation laws in physical theory. The existence of

conservation laws is shown to be related to constraints on the structure of the gravitational

equation of motion, i.e. it requires relationships to hold among the coefficients c_ in these

equations, and therefore is predictive concerning some of the observables of gravity.

Section VI. derives the constraints on the gravitational equation of motion which indicate

that post-Newtonian gravity is derivable from a metric field. If gravity is a metric field based

interaction, then several of the possible gyroscope precession terms vanish as a consequence of

this principle, alone.

In section Vii. it is shown that there is a family of coordinate transformations which

makes one of the ten coefficients in the gravitational equation of motion arbitrary. But it is

shown how all ten coefficients change under this transformation, and this permits conf'trrnation
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that all observables calculated in this study are invariant under this coordinate transformation.

Finally, in section VIII. we collect all the gyroscope precession terms derived in our

general model of gravity. We discuss their magnitude, their relationship to the structure of the

gravitational interaction, and the implications for theory if the observed gyroscope precessions

were to clash with the predictions.

11. Motional Post-Newtonian Corrections to the Gravitational Interaction.

Since our goal is to specify the post-Newtonian gravitational interaction solely from

experimental observations -- including null observations -- the starting point for analysis of

observation is a general, phenomenological expression for the equation of motion for N particles

(bodies of negligible gravitational self-energy or binding energy) which gravitationally interact

with each other.

A-priori this equation of motion can be assumed to hold in only one special asymptotic

(r _ ,,,) inertial frame (the preferred frame); Lorentz invariance of the gravitational interaction

is not presumed but rather is to be discovered, if it exists, from the experimental observations.

A system of bodies which moves as a whole when viewed in the special inertial frame will be

analyzed by the N-body equation of motion, and the dynamical consequences of the system's

motion determined for comparison with observation. The solar system, for example, moves

relative to the universe's local preferred inertial frame at a speed of order 10"3c, yet no orbital

effects related to this motion are evident within experimental accuracy.

Post-Newtonian corrections to the Newtonian acceleration are of order 1/c 2 and take two

forms. There are motiQnal corrections which are of strength (v/c) _ relative to the Newtonian

acceleration. The second type of post-Newtonian corrections are the n0n-linear terms
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proportionalto the square of mass sources (n_m t) and therefore dimensionally proportional to the

inverse cube power of interbody lengths (1/r_).

Writing a most general expression for the motional corrections, the phenomenological

post-Newtonian equation of motion takes the form;

m

_E I; c,v;+c,;, • c,;,.e,,;,.t,,
J r_j

mj_ _ _ m _ w

+ _ --_ri, "[cTvlv, _-c,_,_j _-%v,v, + c,0vj_,] ÷ _ m,m_ _ijk
J rtj J_

2.1

Units of G = c = 1 are used. P,jt is a general vector expression of dimensions l/r 3 and is

composed from the inner-body vectors r ,j, r_ and _'u. Consideration of the non-linear part of the

post-Newtonaln interaction will take place in section llI of this paper, c,, c: ... Cio are ten

dimensionless coefficients expressing the most general motional structure of the post-Newtonian

interaction. The coordinate (or variable) freedom of the equation of motion discussed in section

VII indicates that a "gauge" can be chosen to eliminate any one of the ten c,. Our choice will

be to set c, = 0; however this calculation of observables in this section will include all ten cl; this

explicitly reveals the gauge or coordinate invariance of the calculated observables.

In this section, experimental observables dependent only on ten c, of the motional

structure of the equations of motion will be derived; section HI will derive additional observables

also dependent on the non-linear swacture of the equation of motion.

A system of bodies coUectively moving at velocity _ relative to the preferred inertial

frame in which (2.1) is valid is considered. The coordinate position of each body then takes the
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form;

and

w

r, • % --_ _ + w (2.2b)

For such a system the equations of motion given by (2.1) develop additional terms proportional

to g,and(w)_;

m

- -E mjr,j [(2c _-c,)w-v, + (2c, + c2)w "_j""3"- t" t
l rlj

+ (2c, + cs)_" i',j_, • i_,j* (2% + c_)w ?,jvj • i_,_]

÷ --7- .[(c,÷c,);,_. (c,+c,_, +(c,+c,_,_ ÷(c,• C,o)_j]
J ro

2.3

-_"_ m'-r° [(c,+c,+ %)w z_" (c, ÷cs+ cs)(_" "fij)2] + (c, +% *%+ c,o) _ mF'j -ww

J rU J rU

Post-Newtonian orbital effects in a system moving in the preferred inertial frame therefore

naturally divide into w and (_)2 effects; the latter are considered first.

(Observable 1) Consider a two body orbiting system which moves in a direction w perpendicular

to the orbital plane def'med by r U and v,j • dr,tdt.

r12

2.4
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and a similar equationfor body (2). The solutionsto (2.4) aresimply the Keplerianorbits but

with periodsalteredby the factor;

[I l.(c,+c2 +c,)w 2] 2.5T(w) --T(o) -._

Atomic clocks farfrom the system and moving along with the system (i.e.,clocks in system's

restframe) will be running slow by the specialrelativisticfactor(I - !,_w2). If gravitational

docks (orbits)are to show no dependence of theirrateon theirmotion relativeto the cosmos,

the following constraintmust hold:

c, + c2 + % = -I 2.6

(Observable 2) Now letthe velocityvector_,liein the orbitalplane. The equation of motion

is now

-a.- ,c.-c,-c,)w'-,,:]
3

r12

+ (% + Cs * C9 + ci°) 3
r12

2.7

Applying this to a nominal circular orbit or radius ro, there results a radial perturbation

ro W 2

at(t)-- -___.[c,_-c,_.c,+_,o- _(c,.,c,• c,)]cos2o_ 2.8a

But an observer at rest in the cosmos must "see" or measure a Lorentz contraction of the orbit

8rCt)t_ ffi -_,_ r w2cos2tot 2.8b

Otherwise a co-moving distant observer will see contractions of the orbit proportional to the
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squareof the speedof the orbit throughthecosmos.Comparing(2.8a,b)leadsto theconstraint;

c7 + cs + c9 + C_o - ½(c, + c5 + ce) = 3/4 2.9

(Observable 3) The period of this preceding orbit can be calculated;

[ 2_ ]2 = rn2_na2I + l+(c,
IT(w) j r,J 1/2(c, + c, + c,

1

+ c2 + c3)w= /

-C_-C s-Cg-cto)w= J 2.10

But ro is the mean radius of the Lorentz contracted orbit; the transverse radius of the orbit is

(using (2.8a));

I1 2(C7÷C s+c 9_-clo )-c 4-c_-c 6 /

3

r± = ro + w= 2.11J6

Rewriting (2.10) in terms of r± yields;

2.12

For these gravitational clocks to be properly time dilated as well, a constraint exists;

c ! + c_ + c3 + 9_(c7 + cs + _ + clo) --1 2.13

A very accurate way to observationaUy test for the independence of orbital period dilation on the
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orientation of the orbit relative to the cosmos is to measure the isotropy of the Newtonian

interaction in celestial bodies moving in the cosmos. This will be discussed further in the section

on empirical observations. From (2.6) and (2.13) the condition for isotropy of the strength of

the Newtonian interaction is just;

c_ + cs + c9 + c_o- 0 2.14

(Observable 4) Consider the time rate of change of the angular motion for a two body system;

d w w

x_12). = (c_ + %) rrt_ -m,(rtz
r_2 rt2d'-_"

+ (c7 + %) rn_ - m,3 rn - v!2 r n x _,
r12

2.15

The ftrst term is a periodic perturbation, but the second term gives a secular perturbation to

angular motion for eccentric orbits. The failure to observe such orbital effects requires the

constraint:

c7 + cs = 0 2.16

(Observable 5) Consider the accelerationof a two body system's centerof mass;

dt2 _, m s + mr' L÷2(c, -c,)_ ._-r :.17

m,_[ (c,+c,-c,-C,o)/-;_,1

L"(c,.

For a circular orbit the projection of the center of mass acceleration in the direction w x (r" x v)

16



is;

- E_v x (_ x ¢) -_=-d2R m'rn2wv 2(c,
dt 2 mr 2 + (% + %

1

- %)(_. 0)" |

_ % _ C,o)(_. _)2J
2.18

Both terms in (2.18) produce secular accelerations; they cancel however if there is the constraint;

2(c, - %) + c_ + c9 - cs - C,o - 0 2.19

This constraint resuks in elimination of secular center of mass acceleration for eccentric orbits

as well. The other two terms m (2.17) produce periodic accelerations of the center of mass.

(Observable 6) The complete equation of motion for the interbody vector r" ffi r't - r'2 of a two

body system is obtained from (2.3); including the _, terms it is;

F
d_/" = _rift n_-m, |
dt-"T r _ - r3 L+

-1

(2% * %),_ .; |

(2c,+ cs)_'"i_"
2.20

ffl 2 - m!

The non-secular contribution to angular motion variation is:

d - (% %) r_ - m!
_Gx v) -- + r' r -wrxv 2.21

The equation for radial pemu_ation x(t) of a circular orbit is then;
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i+o_2x m2-m, . [ ]" w v 2c I + c2 + 2% + 2% sintm 2.22
r 3

t = 0 corresponds to _(t) traversing the in-plane component of w (w* is the magnitude of w lying

in the orbital plane). (2.22) has a runaway solution -- x(t) - tcoscat --- contrary to observation,

requiring the constraint;

2c, + c, +2(c7 + c9) = 0

(Observable 7) The angular

perturbation;

motion equation (2.21) then results in an angular

2.23

position

rqSO(t) -- mt - m.z r(c, ÷ %)wv costot 2.24
m

For this longitudinal perturbation to be unseen after a Lorentz transformation to the inertial frame

of a co-moving observer, a constraint is required;

c 7 + c9 = 1 2.25

(Observable 8) From (2.20) the total radial perturbation is;

_Sa" i' = r2 + (2c 4 + c 5 - 2c_ - cs - c9)_- l_" 2.26

This radial pemLrbation along with the angular perturbation given by (2.21) can be applied to the

general Keplerian elliptical orbit. The orbital perturbation is obtained most easily in the u(0) =

l/r(0) representation of the orbit;

18



8u e (m, - m:)
II

u 6 _
o

w(2c 4 _, %)sin(20 - v) 2.27

with the Keplerian orbit being given by;

1/r = u - Uo{ 1 + • cos0}

and

_= Fx_l

The angle v is the orbital longitude of the in-plane component of _. Failure to see such orbital

bulges requires the constraint;

2c4 + cs = 0 2.28

(Observable 9) Consider a three body system consisting of a massive central body of mass M,

with another body of mass m in circular orbit. A third body orbits the body of mass m. From

(2.1) there will be a difference between the acceleration of the test body m by the massive central

body, because of the difference in the two bodies' velocities. Collecting the terms linear in if,

the velocity of the test body relative to body m, the relative acceleration is;

MI_ _ ._ _- c, M _.,._ _.
8ii---2c I R _

2.29

l_ is the position of body m from the central body M, V = dl_/dt and u = d_/dt; 7 is the position

of the test body from body m. The secular part of the acceleration which results from (2.29) is;
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with L being the angular motion of body m;

E- ,x ?

Applying this perturbation to a near-circular test body orbit which lies in the plane of the circular

orbit of body m, the orbital frequency co and natural frequency for radial oscillations (eccentric

motion) co° are altered;

o._= __m + c_ Vco 2.31a
1.3

2 m 2c_) MVCOo =_ - (C.j + _ CO
r3 R 2

2.31b

The difference produced between these frequencies is a contribution to the precession rate of the

test body's orbital periastron,

_coo - cO) - -_ (cI+ ½ c7)MV/R" 2.32
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This is commonly called the "geodetic precession" of an orbit. Observations of the geodetic

precession contribution to the Moon's orbit produced by the motion of the F._Lrth-Moon system

about the sun produces a weak constraint; _'°)

cl + _c7 = 3 2.33

(Observable 10) A test body is in a circular orbit about a body of mass m which gravitationally

free falls toward another body M (M >> m) which is at rest; the test body's orbit around m is

perpendicular to the direction toward M (P, • r = 0). The equation of motion for the test body

can then be written as;

i= 7
MI_ Mn'ff

+x-V7

2.34

with _7 - d_/dt, u -- d_/dt: 1_ is the position of m relative to M, and r" is the position of the test

body relative to m. The g term is a necessary non-linear acceleration term which win drop out

of the final expression for an observable. The gravitational freefaU of m fidfiUs the Newtonian

energy constraint;

½V _ - M/R - const

The test body's angular motion can then be obtained from (2.34); it evolves in time during the

freefall;

._1-c M)= == = "R" 2.35

This, in turn, produces an evolution in the radius and angular frequency of the test body's orbit;
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r -'- r.II _-(X - 2c, - 2(c I

2.36a

and

2.36b

in which the relationship V 2 = 2M/R was used. Atomic clocks freefalling in the gravitational

field of body M will change their ticking rate according to; (s_

2.37

while the proper radius of the orbit is given by

2.38

In (2.37) and (2.38) we have introduced two additional phenomenological parameters related to

non-gravitational clock behavior and the light propagation rate in a gravitational environment;

dx -_ I - _ v 2 - aU('r') 2.39
(tt

and
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c(r') -- 1 + FU(r_ 2.40

Observationally cg = 1:1:10 "4 and F = -2 ± 10 3.

A combination of (2.36a,b) can be formed to produce an observable dependent only on

the motional coefficient c, along with coefficients related to the gravitational influences on light

propagation and non-gravitational clocks;

c M
= (1 -a - 2r-

2.41

in which the proper frequencies _ are measured by co-falling nongravitational clocks, and the

proper orbital radius is measured in terms of locally measured light propagation times across the

orbit. In the solar system no variation of satellite orbital radii or periods are observed as these

satellites follow their planets on the eccentric motion about the Sun: this requires the constraint:

c,= 1-ct-2r 2.42

A constraint on non-linear aspects of the equation of motion follows from the separate absences

of anomalous size or frequency evolution of the orbits;

2.43

requires the constraint;
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3 1+_
X -- 2(cl + c2 + c3) + -.-c, + _ 2.44

2 2

But this constraint will be considered along with the other constraints on non-linear aspects of

the gravitational interaction in section HI (X = cu + c,_ in the notation of that section).

(Observable 1 I) Consider an extended body in motion at velocity w. The matter distribution in

the body will be Lorentz contracted with respect to the proper coordinates, the contraction being;

&j = -V-Y,._

This alters the Newtonian potential of that body;

8U = -V-]_ mj

2.45

2.46

And the gradient of (2.46)in an altered acceleration field;

, Ir--rr_,r,
2.47

From (2.3) there is one term which generates a similar type acceleration field;
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m.

' (w'(r-: -(c,_c,_c,)E, 1_-_,I_ _1_(_-_'_

lr-rjl j

2.48

For a spherical body

mj I 2.49

with

I = Emjr _

The anomalous acceleration field from (2.47) plus (2.48) is then;

8a = -_. +c, ÷c, _'c, _-_ -3w_ 2.50

Absence of observed perturbations of low satellite orbits or gravimeter anomalies on the Earth

surface requires the constraint;

c4 + c5 + c_ = -3/2 2.51

(Observable 12) Let the extended body be spinning;
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Because of the time component of the Lorentz transformation, at a simultaneous preferred frame

time there is unequal proper time across the extended body;

xj = t - g" "r-1 2.53

The rotational motion (2.52) along with the time transformation (2.53) then produces

displacement of each mass dement relative to its proper position;

= v_%- t) = -v_w-rj 2.54

which alters the Newtonian potential of the body by;

and the acceleration field by;

2.55

A number of terms in (2.3) produce a similar type of acceleration field;

m,_ -_j) [(2% + c,)w "_j + (c, + 2%)w-(t - t,)_j "(_ -_,)]

m I
2.56

26



with

Y being the body's rotational angular momentum.

(2.55) and (2.56) is then;

The total anomalous acceleration field from

x ,. _,*_%/f_×___._/__-_ _.o_..,%_.TjL_.__-__;_J
÷_/ + "" "

ko
2.57

Absence of low satellite orbit pet_rbations or gravimeter anomalies on Earth which would be

produced by (2.57) require the constraints;

1 + c2 + 2c3 + (cs + 2c_)/3 = 0 2.58a

cs + clo - (Cs + 2cs)/3 = 0 2.58b

(Observable 13) Consider the interaction terms in (2.1) proportional to (v,_'j) and the source

consisting of a rotating extended body;

From (2.1) this source produces the acceleration field;
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' 2 r2 _" 2
w

7' g' r:

-- _''lc ] F, x J'ri,"r:'-i

2.59

r I is the position of body i from the center of the source, I is the total rotational angular

momentum of the source

"J = E m_x(_x_) 2.60
i

For an orbiting test body the time rate of change of the angular motion of the orbit is;

m _ m

dL c2 * cs J x L
_ riXa t -- _

dt 4 r_

+_- 2-c,+-_c 5 r:

2.61

which results in a secular precession of the orbit about I at the rate;

c2 + c s J
co = - 2.62

4 a.3(l_ e2)3a

a,, and • being the orbit's semimajor axis and eccentricity, respectively. Such a precession is one

manifestation of the so-called "dragging of inertial frames" by a rotating mass with angular
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momentum J_

(Observable 14) The acceleration field (2.59) produced by one spinning mass causes a second

spinning mass to precess. Let the test "gyroscope" have its mass elements moving with

velocities;

with the body having total rotational angular momentum;

= E m_tx(6xTt) 2.64
!

The precession of g is then governed by;

2+ m - C s + C5
8 2 "_" RS

2.65

The first term in (2.65) gives an instantaneous precession rate;

g -_ c,+c, i- 3i-r_,
8 R 3

2.66

while the second term produces a secular contribution to _ of:

2.67a
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A

p is the orbit's normal vector. (2.67) can have a non-zero component along _ which would

• change the magnitude of _ There are also a few non-secular (annual period) contributions to a

gyroscope's precession which are proportional to the velocity w of the solar system with respect

to the preferred inertial frame. Measured in the solar system rest frame the variation of a

gyroscope's angular motion is given by:

8S --V2(4 - _'7 -cs - 2% + 2cI + c2 + c4 4-cs)'_/.w

c7 +c._.._.._s 2 + 2cI + c2+
2 2

2.67b

plus the additional precession rate which is not integrable in closed form;

dS-/dt= 2c, +cs M  .RR. §
2 R 3

2.67c

These precessions have dimensional amplitude of 40 milliarcseconds (mas) for motion around

the Sun on the Earth's orbit. But all these expressions (2.67b,c) have zero coefficients if gravity

is Lorentz invariant (see (2.68)).

And generalizing the geodetic precession (2.32), a gyroscope in orbit will undergo the

secular precession;

R _
2.67d

along with a non-secular variation in spin axis in non-metric theories of gravity;
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% 2 )_ = '/_ _--c,-_c 4- 1 S.VV
2.67e

The placement of an accurate gyroscope in low orbit around the Earth would permit observing

both the precession (2.66) and possible anomalous contributions (2.67a-e). c'_

Summarizing these results, there ate the following constraints from various observables;

Equation Constraint

2.6 ct+c:+c3+ I=0

2.9 2(c7 + cs + c9 + C_o) - (c, + cs + ca) - 3/2 = 0

2.14 c7 + cs + c9 + c,o = 0

2.16 c7 + cs ffi 0

2.19 2(cl - c3) + c7 + c9 - cs - cio = 0

2.23 2c, + c2 + 2(c_ + c9) ffi 0

2.25 c_+c9-1 =0

2.28 2c4 + c_ = 0

2.51 c, + cs + c6 + 3/2 = 0

2.58a 1 + ca + 2% + (cs + 2cs)/3 = 0

2.58b % + c_o - (% + 2c_)/3 - 0

All of the above observables arc related to preferred frame (w dependent) effects. Two additional

observables are independent of preferred frame effects;

2.33 ct + ½c_ -- 3

2.42 c_ = 1 - ¢t - 21"

The first eleven constraints are redundant, but self consistent; they are all fulfilled by the

relationships;
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Ca = 0 rgauge or coordinate choicel 2.6Ra

% = -3/2 + c4 2.68b

c_ = -2c_ 2.68c

c_= 1 +c t 2.68d

c2 = -2 - 2c_ 2.68e

c_ arbitrary 2.68f

cs = -c7 2.685

c9= 1-c_ 2.68h

Cto = c7 - I 2.68i

c7 arbitrary 2.68j

These constraints on the q guarantee that no physical effects proportional to _, or (G)2 will be

observed in a system moving with respect to the cosmos, when that system is observed from its

own rest frame.

Geodetic precession, as observed in the lunar orbit, then provides a constraint between

c_ and c7 (2.33). °°_ And absence of anomalous changes in the radius or period of satellite orbits

as they follow the eccentric orbits of a planet around the Sun, specified c7 in terms of the well

measured speed of light function in a gravitational environment, and the gravitational time

dilation of non-gravitational clocks (2.42). For ct = 1, F = -2 (2.33) and (2.42) yield the specific

coefficient values;

ctffil

c7=4

2.69a

2.69b

Then all ten c, are specified to have the numerical values as determined in Einstein's general

J
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relativity theory (in an appropriate gauge).

In particular, the coefficients which determine the observables related to the dragging of

inertial frames --- (2.62), (2.66) and (2.67) --- are then numerically uniquely specified;

ca + cs " -2 -2% - c7 - -8 2.70a

c2 - c8 + 2cs/3 " 0 2.70b

From (2.70a) it is seen that the normal frame dragging coefficient (ca + %) is predicted from the

geodetic precession coefficient (2.33) if in addition all preferred frame effects are observed to

be absent.

lll. Constraints on the Non-Linear Terms in the Gravitational Equation of Motion.

The last term of (2.1) represents the intrinsically non-linear, post-Newtonian corrections

to linearized gravity, as well as acceleration dependent terms from linearized gravity in which

the acceleration of various bodies have been set equal to their Newtonian values, thereby

producing non-linear contributions to the equation of motion.

Expressing the non-linear part of (2.1) as a phenomenological expansion continues the

philosophy of this investigation;

3.1
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The sumover j andk can includebody i, itself, in somecases.The only restriction is that the

two body indices on one interbody vector can not be the same. A strong constraint on the type

of terms that can be included in the phenomenological expansion (3.1) results from the observed

isotropy of the Newtonian interaction. In (3.1) one can let body j or k become a distant body

(spectator body) which then effectively renormalizes the strength of the two body interaction.

(3.1) becomes in this spectator limit;

M m_tj
_1 = (Cl! .4. C12) E "-"V"R

s J rtj

M, - 2
._. c,,]E_ "'7"m'r". .Rfi., R:

3.2

If the c,s term was not the exact difference between two terms which canceled in the spectator

limit, it would yield a Newtonian interaction between i and j which was dependent on the angle

between r,j and the spectator location R,. Considering the galaxy as the spectator body to the

solar system (M./R, - I0_), the observed isotropy of the Newtonian interaction to a part in I0 '_

strongly constrains (at the 10 .7 level) the type of terms which can appear in (3.1). °t)

We first consider observables within the two body problem but which include non-linear

contributions from (3.1). In this case (3.1) simplifies to;

m_,j mjm,r'_j
=-% "'7- +(ct_-% -%) ..;

roj r_j

3.3
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The solar system mass is so dominated by the Sun's mass, the second term in (3.3) plays no role

in any Sun-planet observables; c_1 is the only non-linear coefficient measurable to good accuracy

from observations of post-Newtonian corrections to planetary orbits about the Sun. From (3.3)

and the rest of the equation of motion (2.1) planets or test bodies orbiting the Sun are governed

by the equation of motion (c_ = 0 gauge);

_== --._--_ [1 _-c_v _]
r 3

M7 ._ M_7

C 7 r 3 Cll r 4

3.4

(Observable 15) For a circular orbit (3.4) yields a modified Kepler's third law relationship

between orbital period and orbital coordinate radius;

lr,.<c, 3.5

Observations by radar ranging between the inner planets will give the weak constraint;

c_ - ell = -3 3.6

(Observable 16) For eccentric orbits (3.4) is most transparently solved in the u(0) - l/r(0)

representation, in which the orbital solutions are given by;

u(0) = Uo{ 1 + • cosoc0} 3.7

with

(x --- 1 - (c, + c7 - _cH)muo 3.8
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(3.7) represents a precessing elliptical orbit with post-Newtonian contribution to orbital precession

of (per orbital period);

GO = (2c, + 2c7 - c,,)nmUo 3.9

(3.9) can be best constrained by observation of Mercury's perihelion precession; (n)

2ct + 2c7 - clt = 6 3.10

Taking the difference between (3.10) and (3.6) yields a relationship between the two key

motional coefficients;

c, + 2c7 -- 9 3.11

(Observable 17) We now rum to observables which intrinsically require three separate mass

elements in their construction. The gravitational (passive) to inertial mass ratio of a celestial

body (particularly the Earth) is an observable which can be measured to good precision. ("'u''s)

Considering a celestial body as a gas of particles in internal equilibrium, the gravitational

self energy contributions to this ratio (gravitational mass/menial mass) are calculable from (2.1)

plus the non-linear interaction given by (3.1). Let a body of mass elements _ be accelerated by

extemal bodies Mk which produce a Newtonian acceleration field;

]E - '-- MkRtJR k 3.12

The weighted sum

i t " g(intemal) + i

is performed over the mass elements of the celestial body, and the tensor and scalar virial
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relationsareusedwhich area consequenceof internal equilibrium;

lTllrn j _ _
E m,;y,- _ E --'T- r,F,, -- 0

i lj rlj

3.13a

rn,v?-½E m,mj = 0

I lJ rij

3.13b

The body's collective acceleration is then given by;

a='l+ 1
M

(_., mtmJru- C n - Ct3 - Ct_ )

C7 Ct t Ct2 2Ct5
-_ + 2 2 +c.-

mlmj

3.14

The constraint required for the gravitational to inertial mass ratio of Earth to be one as observed

in lunar laser ranging is then; (t_'t"

3c, - c, - 5ctt - ct2 - 6cls - 2c,, - 4ct_ = 0 3.15a

Additionally there are the two weaker constraints required for that ratio to be one for a rotating

celestial body;

-c, + c,, - c,2 - 2c,, - 4.cts = 0 3.15b

and
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c,_ = 0 3.15c

(Observable 18) The active gravitational mass of a celestial body can also be evaluated from the

phenomenological expansions (2.1) plus (3.1). For a gas model of a celestial body, the active

mass is given by;

mI
+ _ m[r_ (c, "- ct, - 2ct2 + ½)

mjm k _ _
+ ½ _ , rjkrjt(c,, + 2Cts - Cto - el, )

rjk
mjrrq

+ w2E -w- _. _,)(c, - 3c,,)
rj_

3.16

A

in which R is the unit vector toward the test body measuring the active mass. If the active mass

is to equal the energy content (fast line of (3.16)) of the body, three constraints are required;

c3 + ct4 - 2ct2 + ½ = 0 3.17a

c,, + 2c_ - cto - c,_ = 0 3.17b

and

c_- 3Ct4

Unfortunately,

constraints.

=0

there are no solar system observadons accurate

3.17c

enough to enforce these

(Observable 19) The perturbations of the orbit of an earth satellite are of interest. The Earth's

orbit about the Sun and the satellite's orbit about the Earth are assumed to be nominally circular

and coplanar. The relevant perturbations of the sateUite relative to Earth are then;
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-- -(2c_ + c z) mr-_-_ + (c 7 _-%) m/. _u
r 3 r 3

-- C I _ + C1 + (ell + Cl3 +

R 3 r3 r R 3

Mml_ .?/ _ m(7.1_) 2
-(%-c,,-2ci5) _Vri -3% R 3 r_

The resulting radial perturbations of the satellite orbit are then given by; °s:9)

8r(t)
cos(co - fl)t

(1 - f2/co)(co2o - (co - f2) 2)

m
uuv

-(2c I ÷ c 2 + 2c 7 + 2c9) r2

I 53c13 + 2cll + cl4 + ._- cts - c_ + c2 + 2c 7) M

fl 3

--_ (% + c. - c, * _c.)

3.18

3.19

i_ and r" are the positions of Earth from the Sun and satellite from the Earth, respectively, v -

Rfl and u = rco are the speeds of the Earth relative to the Sun and the satellite relative to the

Earth, respectively, fl and co are the orbital angular frequencies of the Earth and satellite,

respectively, coo is the frequency of perigee of the satellite orbit. M and m are the masses of

the Sun and Earth, respectively.

The two largest contributions to (3.19) are dimensionally larger than the experimental

accuracy with which lunar laser ranging (and ranging to low earth satellite orbits) data is fitted

by the general relativistic model; hence there are the two constraints;

2c_ + c2 + 2c7 + 2c9 = 0 3.20a

and

3% + 2cit+ c14+ 5cis/4-ct + c2 + 2c7 = 0 3.20b
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The first of the above constraints is the same as (2.23).

ALl of the constraints presented in this section on the non-linear gravitational interaction

are satisfied with the coefficients in (3.1) taking the general relativistic values;

c_ ffi 4 3.21a

c!2 = 1 3.21b

c_sffi-7/2 3.21c

cl_= -I/2 3.21d

cts- 0 3.21e

along with the f'trst ten c i taking the values given in section II, which are also the general

relativistic values. However several of the constraints of this section are too weakly specified

by observation, so that all five of the non-linear coefficients are not determined by solar system

observations alone. We do obtain the weak constraint (3.11) between cl and c_ though through

consideration of these observations involving non-linear aspects of the gravitational interaction.

IV. Experimental Accuracy of Constraints on Observables

The models used to fit solar system observations are not as general as (2.1); they will

generally assume at least that gravity is a metric field based interaction. Therefore, a number of

the observables calculated in this study will not explicitly have been fitted in past analysis of

observational data. So in this section we will sometimes have to infer what experimental

accuracy would be if existing data were fit for the observables within our model.

We give an overview of the experimental accuracy of the various observable constraints

derived in this study. We ftrst consider two very high accuracy observations which give us the

strong constraints;
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and

c7+c, +c 9-c 8=0± lO 7 4.1

2(Cl-C3)+c_+c 9-c.-cto =0+ 104 4.2

(4.1) results from the observed isotropy of the Newtonian gravitational interaction between the

mass elements of the Sun: if (4.1) was not fulfilled, the Sun's spin axis would have precessed

out of solar system alignment over the past 4.5 109 years. °" (4.2) is the result of a possible self-

acceleration of a spinning celestial body;

4.3

U is the body's gravitational self energy, _ is its rotational angular frequency. Application of

this to the Earth, as observed with lunar laser ranging data, leads to the constraint (4.2). c_

The constraint (2.23) is fairly strong;

2ct + c2 + 2C7 + 2C9 = 0 4-I0-s 4.4

and resultsfrom absence of anomalous range oscillationsin low Earth satelliteorbits(3.19)as

measured by laserranging.

The absence of gravimeter anomalies on Earth largerthan about I0"7gal give the

moderately strong consu'aints; (z°'2t)

c_ + cs + ca + 3/2 = 0 4-I0"3

I + 2c2 + 2cs + (Cs+ 2c6)/3= 0 4-10-2

cs + C,o- (cs+ 2%)/3 = 0 4-I02

The constraint(2.16) is quantified by the upper limits on anomalous

4.5a

4.5b

4.5c

secular or
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semisecular changes in Earth's orbital period;

c7 + cs = 0 ± 10 .3 4.6

While (2.25) is required to suppress longitudinal anomalies in the inner planet position greater

than a few tenths of a kilometer, and as measured by radar ranging;

c7+c 9= 1 ± 10.2 4.7

Finally (2.6) is quantified by the absence of anomalous period changes in earth satellite orbits;

ct + c2 +c3 + 1 -0± 10 3 ,*.8

The solution (2.68) for the motional coefficients is therefore accurate to about 1 percem, with

some of the relationships much stronger.

The geodetic precession observation of the Moon's orbit is, however, only about 10

percent accurate. °°_ So without the use of other observables involving non-linear aspects of the

gravitational interaction, the dragging of inertial flames proportional to c2 + c8 can be predicted

to only about 10 percent accuracy. In fact, the inclusion of the non-linear observables in section

HI does not improve the accuracy with which c I and c7 can be determined. This is because a

number of new coefficients must be introduced to express the general non-linear interaction (3.1);

and the number of independent observables of high accuracy in the solar system does not

increase sufficiently to both constrain the new coefficients in (3.1) as well as c, and c7.

V. Conditions on the Equation of Motion for Momentum Conservation.

The phenomenological gravitational many body equation of motion (2.1) as it stands in

its generality does not possess a conservation law for total momentum of an isolated system of

bodies. However, certain constraint relationships among the coefficients ca will indicate a

momentum conservation law. Let an isolated system's total conserved momentum be given by
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an expression of the general form;

1
+ P_ _ mj mj ],

J rij J rq J
5.1

with Pl.2.3 being three dimensionless constants. Then d_/dt = 0 yields;

0 "E m_ _'P,E (2m,_, .a_v, _-m,v_,)
I i

(m,mj_ m3n j_ _ )_-p,_ _--a,-r,j _ru r,,'v,,v,

+ P, _ m,mj, _',TiJ-a, + r,jv,j "v, + v,/rij "v, - 3_,j_," l_,jvij-l',j)
q

5.2

Using (2.1) and (3.1) to express the first term in (5.2), and elsewhere using the Newtonian

acceleration field to represent ai in post-Newtonian terms of (5.2), i.e.;

ai m E _ 3n_ rJr.,

some of the coefficients c t in (2.1) and (3.1) are then constrained to relationships involving the
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three constants p_.

ct - c3 - "Pt 4- P3

c, - % = -3p3

c7 - c_o - 2pt + p: - P3

cs - c9 = p= + P3

Ctt " Ct2 + el3 -- P2

c_, + 2ct_ = P3

If a center of energy exists which is to move most generally at constant velocity;

= rl},

I j

5.3a

5.3b

5.3c

5.3d

5.3e

5.3f

5.4

with

and therefore

d:R/dt: = 0

then

Pl = -P2 = -P3 = 1/2 5.5
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and the constraints (5.3) are then even more restrictive. Not surprisingly, the momentum

conservations constraints (5.3) automatically lead to the vanishing of the observable (2.19)

associated with the possible self-acceleration of the center of mass of a gravitational system.

VI. Conditions on the Gravitational Equations of Motion to be Metric Field Derivable.

The phenomenological gravitational many body equations of motion (2.1) plus (3.1) are

more general than what can be obtained from a metric theory of gravity. In metric theories there

are several potential functions --- a symmetric g_(r,t) -- which for test bodies yield the equation

of motion;

d(o_L/o_)/dt - onI._ = 0 6.1 a

with

L(r',t) =- _/g_,t) dx_]dt dxV/dt 6.1b

A general expansion for the metric field potential contains seven free parameters;

2

g_ = I_2U+Mt_ mjvj +M_
j Jr-rjl j

mjtTLt 1 +

l --r ,lg '"
6.2a

mj_
;')a-r')

6.2b
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glj -'- -(1 - MsU)_ U 6.2c

with

v ,t) -- mj 6.2d

Four coordinate gauge choices were available to set some of the metric terms generally equal to

zero: the spatial &j is kept diagonal and isotropic by a spatial coordinate transformation;

6.3a

while an acceleration dependent term in go. is generally eliminated by a time transformation;

t --_ t +X_ rn_-_k)-VJl_-_,l 6.3b
It

Since there are fewer free parameters in (6.2) than there are coefficients c_ in (2.1) plus

(3.1), constraints on the c i are necessary in order that the equation of motion is derivable from

a metric field of general form. Using (6.2) inthe Euler-Lagrange equation (6.1) yields an

equation of motion whose terms can be compared to the phenomenological equation of motion

(2.1) plus (3.1).

are then;

C I _ -M_

The constraints on the ci necessary for a metric field based equation of motion

6.4a
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c2= -(M 3 + M,) 6.4b

c3 = M4 - MJ2 6.4c

c, = cs = 0 6.4d

c_ = -3(M_ + M,) 6.4¢

c7 = 2 - M s 6.4f

cs = -(M3 + M,) 6.4g

c9 = MS - I 6.4h

Clo= M3 - M4 - MS 6.4i

c,I = MS- Ms + 1 6.4j

cl2 = MT/'2 6.4k

ct3 = -M3 6.41

cl+ = -M+ 6.4m

cls = 0 6.4n

Several of the observables are determined by the fulf'dlment of the above metric constraints. For

example, (2.25) and (2.28) are automatically fulfilled if (6.4) hold. Also the anomalous

gyroscope precession (2.67a) vanishes if gravity is derivable from a metric field.

Vll. lnvariance of Motional Observables Under Coordinate (Gauge) Transformations.

The N body coordinates ri used in (2.1) can be combined to form N new, independent

coordinates associated with the motion of the N bodies. The equations of motion (2.1) and (3.1)

would of course be altered under these coordinate transformations. In particular, if the

transformation;
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P

7.1

is made, the ten q in (2.1) are altered by;

ct --* c, + g 7.2a

c2 --* c2 -2_ 7.2b

c3 -+ c3 + _ 7.2c

c4 -"* c4 - 3_ 7.2d

c,_ c_+ 6_ 7.2e

cs --+c6 -3_ 7.2f

c7 "-_c7 - 2_ 7.2g

cs "+ cl + 2_ 7.2h

% _ % + 2_ 7.2i

cto _ C,o- 2_ 7.2j

The form of_, changes also. The coordinate speed of light function is altered, a time derivative

of (7. l) giving in fu'st order approximation;

C_,t,O)_ C_,t,_.)+ _(U - _ rr_((_-7k)._)2/i__7_i,)

One is therefore always free to choose a gauge or set of coordinates which sets one of

the q = 0. However, the observables which were derived in section II are all invariant under this

transformation. Setting (:4 = 0 is the conventional choice of coordinates, as this leads to a simple

scaling relationship between the spatial global coordinates and the local proper spatial coordinates
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measured,in particular,by light ray propagation;

_'p -- (t ÷u(T,t))_" 7.3

A

It is important tO note that the speed of light function is isotropic (independent of c --- I"_-- O)

cG,t) = - mj/I¥- 1 + mj(G-Y'?.e)=/I¥-¥j1'
J J

in the same coordinate system that (7.3) is valid.

VIIi. Gyroscope Precession.

In our general, phenomenological model for the gravitational equation of motion of

matter, we derived several possible contributions to the precession rate of the spin axis of an

orbiting gyroscope. There are the two well known secular terms which are non-zero in general

relativity;

dg/dt = _(e_ + _eT) m (_ x _/dt)/r _ x g 8.1

+ (c 2 + c0/8 (J - 3J _t)lr 3 × S 8.2

(8.1) is the geodetic precession contribution, while (8.2) is the "frame dragging" precession due

to the Earth's spin angular momentumS. (In general relativity cl ffi 1, c7 = -c2 = -c8 = 4).

There is an additional secular precession in non-metric theories of gravity;

a_(1 - e2) V2

8.3

49



A

ao, e and p being the gyroscope orbit's semi-major axis, eccentricity and unit polar vector,

respectively.

Non-secular precessions of sufficient magnitude to be measured are also of interest. In

gravitational theories which have a preferred inertial frame (absence of Lorentz invariance), there

are some possible changes in the gyroscope spin axis;

8_ --,/2(4-:3c..,-_, - 2¢,+2c,_-c:÷2_,.,-c,)_¢.,_
+ (2 * 2c I * c 2 + c7 ÷ c8)/4 (w × V) x $ 8.4a

+(_,+,,,-2-2c,- _)/4(_._w+_.w+O

and the additional precession rate (not integrable in closed form);

d_/dt.. ,/,(2c, *cs)M§-ll-_,ff/R 3 8.4b

w is the velocity of the solar system with respect to the cosmological preferred inertial flame,

and "_ -- dl_dt is the velocity of the gyroscope with respect to the Sun, which has mass M.

These precessions (8.4a,b) are absent in general relativity, but dimensionally are of magnitude

80 mill/arcseconds and have an annual period.

Finally there is a small non-secular variation in gyroscope spin axis which only exists in

non-metric theories of gravity;

§ -- ,,4_:,,,,,_- c, - 2c,,/:+- 1)§. _"_ 8.5
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which is dimensionaUy only of order 2 milliarcseconds.

It should be pointed out that the geodetic precession (8.1), though dominated by its earth

orbiting contribution (-3 I(P mas/yr), also has a contribution (,,13 mas/yr) from the orbital

motion of the gyroscope about the Sun.

As was shown in previous sections, all the coefficients in the motional, post-Newtonian

gravitational interaction --- including the gravitomagnetic ¢0efficients --- are measured to some

precision by other observations in the solar system which do not involve gyroscope precession.

Therefore the precession rates can be predicted with accuracies of about 10 percem, or perhaps

slightly better. One could then view the gyroscope precession observations as a way of

substantially improving the measurement of the coefficient combination in (7.1) --- ct + 9_c7.

If the gyroscope precessions are found to be different than predicted, we believe this

would present a major crisis for gravitational theory. The model (2. I) is quite general, especially

with regard to the motional, two-body post-Newtonian interaction which includes

m

gravitomagnetisrn. Given two mass elements nh,n 3 located at relative coordinates_,j -- r, - rj, and

each having velocity vi,vj, respectively, we have found it impossible to generalize a post-

Newtonian acceleration expression beyond the form given by (2.1). Yet this would seem to be

necessary if redundant observations could not all be predicted by the nine coefficient model (2. I).

Since the spin angular momentum of the gyroscopes to be placed into orbit is motional

angular momentum --- not quantum spin angular momentum --- there would appear tO be no way

to explain unpredicted precession by means of some anomalous coupling of gravity to spin. For

macroscopic gyroscopes, spin angular momentum is simply a manifestation of particle motion,

superimposed over all the matter in the gyroscope.
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